
Aaron Wirth

1

Complete List Of Visual Basic Commands
Note: To go to pages use the Page function in the View – Go To menu, shortcut: Shift +
Ctrl + N. Press Ctrl + Home to return to Table of Contents.
Table of Contents
Strings (P3)
Left and Right functions (P3) Base 0 & 1 (P3) Trim, LTrim, and RTrim functions (P3)
LCase and UCase functions (P4) Formatting (P4) FormatCurrency, Percent & Number (P5)
FormatDateTime (P6) Mid function (P7) Chr Function (P7)
Len Function (P7) InStr (P8) String function (P9)
InstrRev (P9) Asc Function (P9) Space Function (P9)
Replace Function (P10) StrComp (P10) StrConv function (P10)

Math (P12)
Val Function (P12) Round (P12) Int and Fix functions (P12)
Rnd & Randomize (P12) Sgn (P13) Sin, Cos, Tan, Log, Atn & Exp Functions (P13)
Abs function (P13) Other Math Functions (P14)

Logic (P15)
Mod Operator (P15) And (P15) Or Operator (P16)
Xor Operator (P17) If Not (P17) Like Operator (P17)
Is Operator (P18)

Arrays (P19)
Erase Statement (P19) Dim (P19) ReDim (P19)
Array Function (P20)

Files/Folders (P21)
Dir (P21) ChDir (P22) ChDrive (P22)
CurDir (22) MkDir (P22) RmDir Function (P23)
Kill Function (P23) FileDateTime (P23)
FileLen (P23) FileCopy (P24) Cut, Copy & Pasting Text (P24)
GetAttr (P24) SetAttr (P25) FreeFile function (P25)
Open Function (P26) Close Statement (P27)
Line Input (P27) EOF Function (P27)
Lof Function (P28) Print Function (P28)

Error Handling (P29)
On Error Statement (P29) Resume, Resume Next, Resume Line (P29)
Error Function (P30)

Declarations (P31)
Function Procedures (P31) Const (P32) Call Statement (P33)
CallByName (P33) Option Explicit (P34)
Option Private (P34) Option Compare (P34)
Type…End Type (P35) GetObject (P35) CreateObject (P36)
Let Statement (P36) TypeName (P37) VarType (P38)
DefType (P39)

Date/Time (P41)
Date (P41) Time (P41) Now (P41)
Timer (P41) DateAdd (P42) DateDiff (P42)
DateSerial (P44) DateValue (P44) Year (P45)
Month (P45) MonthName (P45) WeekDayName (P45)
Day (P46) Hour (P46) Minute (P47)
TimeSerial (P47) TimeValue (P48) WeekDay (P48)

Aaron Wirth

2

Miscellaneous (P50)
MsgBox (P50) Shell (P51) RGB (P52)
QBColor (P53) Beep (P53) InputBox (P53)
Load (P54) UnLoad (P54) SendKeys (P55)
LoadPicture (P57) AppActivate (P57)

Values (P58)
IsNull (P58) IsEmpty (P58) IsNumeric (P58)

Loops and Conditional (P59)
If...Then...Else (P59) End Statements (P59)
Stop Statement (P60) Switch (P61) GoTo Statement (P61)
On...GoSub, On...GoTo Statements (P62) GoSub...Return Statement (P62)
With Statement (P63) For...Next Statement (P63)
While...Wend Statement (P64) Do...Loop Statement (P65)
IIf Statement (P65) For Each...Next Statement (P66)
Select Case Statement (P67)

Aaron Wirth

3

Strings
Left and Right functions
Returns a Variant (String) containing a specified number of characters from the right side of a string.
Syntax
Left(string, length)
Right(string, length)

Example:
Dim AnyString, MyStr
AnyString = "Hello World" ' Define string.
MyStr = Right(AnyString, 1) ' Returns "d".
MyStr = Right(AnyString, 6) ' Returns " World".
MyStr = Right(AnyString, 20) ' Returns "Hello World".

Part Description

string Required. String expression from which the rightmost characters are returned. If string contains
Null, Null is returned.

length Required; Variant (Long). Numeric expression indicating how many characters to return. If 0, a
zero-length string ("") is returned. If greater than or equal to the number of characters in string,
the entire string is returned.

Base 0 & 1
Option Base {0 | 1}
Because the default base is 0, the Option Base statement is never required. If used, the statement must appear in
a module before any procedures. Option Base can appear only once in a module and must precede array
declarations that include dimensions.
The Option Base statement only affects the lower bound of arrays in the module where the statement is located.

Example:
Dim iNumber(15 To 114) As Integer

Trim, LTrim, and RTrim functions
Returns a Variant (String) containing a copy of a specified string without leading spaces (LTrim), trailing
spaces (RTrim), or both leading and trailing spaces (Trim).
The required string argumhent is any valid string expression. If string contains Null, Null is returned.
Syntax
LTrim(string)
RTrim(string)
Trim(string)

Example:
Dim MyString, TrimString
MyString = " <-Trim-> " ' Initialize string.
TrimString = LTrim(MyString) ' TrimString = "<-Trim-> ".
TrimString = RTrim(MyString) ' TrimString = " <-Trim->".
TrimString = LTrim(RTrim(MyString)) ' TrimString = "<-Trim->".
' Using the Trim function alone achieves the same result.
TrimString = Trim(MyString) ' TrimString = "<-Trim->".

Aaron Wirth

4

LCase and UCase functions
Returns a String that has been converted to lowercase.
The required string argument is any valid string expression. If string contains Null, Null is returned.
Syntax
UCase(string)
LCase(string)

Remarks
Only uppercase letters are converted to lowercase; all lowercase letters and nonletter characters remain
unchanged.

Formatting
Returns a Variant (String) containing an expression formatted according to instructions contained in a format
expression.
Syntax
Format(expression[, format[, firstdayofweek[, firstweekofyear]]])

The Format function syntax has these parts:

Part Description

expression Required. Any valid expression.

format Optional. A valid named or user-defined format expression.

firstdayofweek Optional. A constant that specifies the first day of the week.

firstweekofyear Optional. A constant that specifies the first week of the year.

Settings
The firstdayofweek argument has these settings:

Constant Value Description

vbUseSystem 0 Use NLS API setting.

VbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

The firstweekofyear argument has these settings:

Constant Value Description

vbUseSystem 0 Use NLS API setting.

vbFirstJan1 1 Start with week in which January 1
occurs (default).

vbFirstFourDays 2 Start with the first week that has at
least four days in the year.

Aaron Wirth

5

vbFirstFullWeek 3 Start with the first full week of the
year.

Symbol Range

d 1-30

dd 1-30

ww 1-51

mmm Displays full month names (Hijri month names have
no abbreviations).

y 1-355

yyyy 100-9666

Example:
MyTime and MyDate are displayed in the development environment using current system short time setting and
short date setting.
Dim MyTime, MyDate, MyStr
MyTime = #17:04:23#
MyDate = #January 27, 1993#

' Returns current system time in the system-defined long time format.
MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long date format.
MyStr = Format(Date, "Long Date")

MyStr = Format(MyTime, "h:m:s") ' Returns "17:4:23".
MyStr = Format(MyTime, "hh:mm:ss AMPM") ' Returns "05:04:23 PM".
MyStr = Format(MyDate, "dddd, mmm d yyyy") ' Returns "Wednesday,
 ' Jan 27 1993".
' If format is not supplied, a string is returned.
MyStr = Format(23) ' Returns "23".

' User-defined formats.
MyStr = Format(5459.4, "##,##0.00") ' Returns "5,459.40".
MyStr = Format(334.9, "###0.00") ' Returns "334.90".
MyStr = Format(5, "0.00%") ' Returns "500.00%".
MyStr = Format("HELLO", "<") ' Returns "hello".
MyStr = Format("This is it", ">") ' Returns "THIS IS IT".

FormatCurrency, FormatPercent, FormatNumber
Syntax
FormatCurrency(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit
[,UseParensForNegativeNumbers [,GroupDigits]]]])
FormatPercent(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit [,UseParensForNegativeNumbers
[,GroupDigits]]]]) FormatNumber(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit
[,UseParensForNegativeNumbers [,GroupDigits]]]])

Part Description

Expression Required. Expression to be formatted.

Aaron Wirth

6

NumDigitsAfterDecimal Optional. Numeric value indicating how many places to the
right of the decimal are displayed. Default value is –1, which
indicates that the computer's regional settings are used.

IncludeLeadingDigit Optional. Tristate constant that indicates whether or not a
leading zero is displayed for fractional values. See Settings
section for values.

UseParensForNegativeNumbers Optional. Tristate constant that indicates whether or not to
place negative values within parentheses. See Settings
section for values.

GroupDigits Optional. Tristate constant that indicates whether or not
numbers are grouped using the group delimiter specified in
the computer's regional settings. See Settings section for
values.

Example:
result = FormatCurrency(324.45)
result = FormatPercent(324.45, 0)
result = FormatNumber(324.45, 2)

FormatDateTime
Description
Returns an expression formatted as a date or time.
Syntax
FormatDateTime(Date[,NamedFormat])

The FormatDateTime function syntax has these parts:

Part Description

Date Required. Date expression to be formatted.

NamedFormat Optional. Numeric value that indicates the date/time format used. If omitted,
vbGeneralDate is used.

Settings
The NamedFormat argument has the following settings:

Constant Value Description

vbGeneralDate 0 Display a date and/or time. If there is a date part, display it as a
short date. If there is a time part, display it as a long time. If
present, both parts are displayed.

vbLongDate 1 Display a date using the long date format specified in your
computer's regional settings.

vbShortDate 2 Display a date using the short date format specified in your
computer's regional settings.

vbLongTime 3 Display a time using the time format specified in your computer's
regional settings.

vbShortTime 4 Display a time using the 24-hour format (hh:mm).

Aaron Wirth

7

Mid function
Returns a Variant (String) containing a specified number of characters from a string.
To determine the number of characters in string, use the Len function.
Syntax
Mid(string, start[, length])

The Mid function syntax has these named arguments:

Part Description

string Required. String expression from which characters are returned. If string contains Null, Null is
returned.

start Required; Long. Character position in string at which the part to be taken begins. If start is
greater than the number of characters in string, Mid returns a zero-length string ("").

length Optional; Variant (Long). Number of characters to return. If omitted or if there are fewer than
length characters in the text (including the character at start), all characters from the start
position to the end of the string are returned.

Example:
Dim MyString, FirstWord, LastWord, MidWords
MyString = "Mid Function Demo" ' Create text string.
FirstWord = Mid(MyString, 1, 3) ' Returns "Mid".
LastWord = Mid(MyString, 14, 4) ' Returns "Demo".
MidWords = Mid(MyString, 5) ' Returns "Function Demo".

Chr Function
Returns a String containing the character associated with the specified character code.
The required charcode argument is a Long that identifies a character.
Syntax
Chr(charcode)

Example:
Dim MyChar
MyChar = Chr(65) ' Returns A.
MyChar = Chr(97) ' Returns a.
MyChar = Chr(62) ' Returns >.
MyChar = Chr(37) ' Returns %.

Len Function
Returns a Long containing the number of characters in a string or the number of bytes required to store a
variable.
Syntax
Len(string | varname)

The Len function syntax has these parts:

Part Description

string Any valid string expression. If string contains Null, Null is returned.

Varname Any valid variable name. If varname contains Null, Null is returned. If varname is a Variant,
Len treats it the same as a String and always returns the number of characters it contains.

Example:
Label1 = Len(Text1) ' Text1 = “Blah”

' Label1 = “4”

Aaron Wirth

8

InStr function
Returns a Variant (Long) specifying the position of the first occurrence of one string within another.
Syntax
InStr([start,]string1, string2[, compare])

The InStr function syntax has these arguments:

Part Description

start Optional. Numeric expression that sets the starting position for each search. If omitted,
search begins at the first character position. If start contains Null, an error occurs. The start
argument is required if compare is specified.

string1 Required. String expression being searched.

string2 Required. String expression sought.

compare Optional. Specifies the type of string comparison. If compare is Null, an error occurs. If
compare is omitted, the Option Compare setting determines the type of comparison.
Specify a valid LCID (LocaleID) to use locale-specific rules in the comparison.

Settings
The compare argument settings are:

Constant Value Description

vbUseCompareOption -1 Performs a comparison using the setting of the
Option Compare statement.

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

vbDatabaseCompare 2 Microsoft Access only. Performs a comparison
based on information in your database.

Return Values

If InStr returns

string1 is zero-length 0

string1 is Null Null

string2 is zero-length start

string2 is Null Null

string2 is not found 0

string2 is found within string1 Position at which match is found

start > string2 0

Example:
Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".
' A textual comparison starting at position 4. Returns 6.
MyPos = Instr(4, SearchString, SearchChar, 1)
' A binary comparison starting at position 1. Returns 9.
MyPos = Instr(1, SearchString, SearchChar, 0)
MyPos = Instr(SearchString, SearchChar) ' Returns 9.

Aaron Wirth

9

MyPos = Instr(1, SearchString, "W") ' Returns 0.

String function
Returns a Variant (String) containing a repeating character string of the length specified.
Syntax
String(number, character)

The String function syntax has these named arguments:

Part Description

number Required; Long. Length of the returned string. If number contains Null, Null is returned.

character Required; Variant. Character code specifying the character or string expression whose first
character is used to build the return string. If character contains Null, Null is returned.

Remarks
If you specify a number for character greater than 255, String converts the number to a valid character code
using the formula:
character Mod 256

InstrRev
Returns the position of an occurrence of one string within another, from the end of string.
Syntax
InstrRev(stringcheck, stringmatch[, start[, compare]])

Settings
The compare argument can have the following values:

Constant Value Description

vbUseCompareOption –1 Performs a comparison using the setting of the Option
Compare statement.

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

vbDatabaseCompare 2 Microsoft Access only. Performs a comparison based on
information in your database.

Asc Function
Returns an Integer representing the character code corresponding to the first letter in a string.
Syntax
Asc(string)

The required string argument is any valid string expression. If the string contains no characters, a run-time error
occurs.

Example:
Dim MyNumber
MyNumber = Asc("A") ' Returns 65.
MyNumber = Asc("a") ' Returns 97.
MyNumber = Asc("Apple") ' Returns 65.

Space Function
This function by itself produces a certain number of spaces. It's best use is to clear fixed-length strings.
sRecord$ = Space(128)

Aaron Wirth

10

Replace Function
Returns a string in which a specified substring has been replaced with another substring a specified number of
times.
Syntax
Replace(expression, find, replace[, start[, count[, compare]]])

The Replace function syntax has these named arguments:

Part Description

expression Required. String expression containing substring to replace.

find Required. Substring being searched for.

replace Required. Replacement substring.

start Optional. Position within expression where substring search is to begin. If
omitted, 1 is assumed.

count Optional. Number of substring substitutions to perform. If omitted, the
default value is –1, which means make all possible substitutions.

compare Optional. Numeric value indicating the kind of comparison to use when
evaluating substrings. See Settings section for values.

StrComp function
Returns a Variant (Integer) indicating the result of a string comparison.
Syntax
StrComp(string1, string2[, compare])

The StrComp function syntax has these named arguments:

Part Description

string1 Required. Any valid string expression.

string2 Required. Any valid string expression.

compare Optional. Specifies the type of string comparison. If the compare argument is Null, an error
occurs. If compare is omitted, the Option Compare setting determines the type of
comparison.

Example:
Dim MyStr1, MyStr2, MyComp
MyStr1 = "ABCD": MyStr2 = "abcd" ' Define variables.
MyComp = StrComp(MyStr1, MyStr2, 1) ' Returns 0.
MyComp = StrComp(MyStr1, MyStr2, 0) ' Returns -1.
MyComp = StrComp(MyStr2, MyStr1) ' Returns 1.

StrConv function
Returns a Variant (String) converted as specified.
Syntax
StrConv(string, conversion, LCID)

The StrConv function syntax has these named arguments:

Part Description

string Required. String expression to be converted.

Aaron Wirth

11

conversion Required. Integer. The sum of values specifying the type of conversion to perform.

LCID Optional. The LocaleID, if different than the system LocaleID. (The system LocaleID is
the default.)

Aaron Wirth

12

Math
Val function
Returns the numbers contained in a string as a numeric value of appropriate type.
Syntax
Val(string)

The required string argument is any valid string expression.
The Val function stops reading the string at the first character it can't recognize as part of a number. Symbols
and characters that are often considered parts of numeric values, such as dollar signs and commas, are not
recognized. However, the function recognizes the radix prefixes &O (for octal) and &H (for hexadecimal).
Blanks, tabs, and linefeed characters are stripped from the argument.

Round
Description
Returns a number rounded to a specified number of decimal places.
Syntax
Round(expression [,numdecimalplaces])

The Round function syntax has these parts:

Part Description

expression Required. Numeric expression being rounded.

numdecimalplaces Optional. Number indicating how many places to the right of the decimal are
included in the rounding. If omitted, integers are returned by the Round
function.

Example:
Text1.Text = Number
Round(Number,5)
‘Rounds the number in text1 to 5 decimal places

Int and Fix functions
Returns the integer portion of a number.
Syntax
Int(number)
Fix(number)

The required number argument is a Double or any valid numeric expression. If number contains Null, Null is
returned.
Both Int and Fix remove the fractional part of number and return the resulting integer value.
The difference between Int and Fix is that if number is negative, Int returns the first negative integer less than
or equal to number, whereas Fix returns the first negative integer greater than or equal to number. For example,
Int converts -8.4 to -9, and Fix converts -8.4 to -8.

Rnd and Randomize functions
A function which generates a random number.
Randomize uses number to initialize the Rnd function's random-number generator, giving it a new seed value.
If you omit number, the value returned by the system timer is used as the new seed value.
Syntax
Randomize [number]
Rnd[(number)]

Example:
Randomize
Label1 = Int((6 * Rnd) + 1) 'Generate random value between 1 and 6.

Aaron Wirth

13

Sgn function
Returns a Variant (Integer) indicating the sign of a number.
Syntax
Sgn(number)

The required number argument can be any valid numeric expression.
Return Values

If number is Sgn returns

Greater than zero 1

Equal to zero 0

Less than zero -1

Example:
Dim MyVar1, MyVar2, MyVar3, MySign
MyVar1 = 12: MyVar2 = -2.4: MyVar3 = 0
MySign = Sgn(MyVar1) ' Returns 1.
MySign = Sgn(MyVar2) ' Returns -1.
MySign = Sgn(MyVar3) ' Returns 0.

Sin, Cos, Tan, Log, Atn & Exp Functions
If you're into geometry, you're all set there too. From the list of VB functions below, you can make any
geometric calculation that exists. (Assuming you're Albert Einstein).
Syntax
Sin(number)
Cos(number)
Tan(number)
Log(number)
Atn(number)
Exp(number)

Abs function
Returns a value of the same type that is passed to it specifying the absolute value of a number.
Syntax
Abs(number)

The required number argument can be any valid numeric expression. If number contains Null, Null is returned;
if it is an uninitialized variable, zero is returned.

Example:
Dim MyNumber
MyNumber = Abs(50.3) ' Returns 50.3.
MyNumber = Abs(-50.3) ' Returns 50.3.

Aaron Wirth

14

Other Math Functions
The following is a list of nonintrinsic math functions that can be derived from the intrinsic math functions:

Function Derived equivalents

Secant Sec(X) = 1 / Cos(X)

Cosecant Cosec(X) = 1 / Sin(X)

Cotangent Cotan(X) = 1 / Tan(X)

Inverse Sine Arcsin(X) = Atn(X / Sqr(-X * X + 1))

Inverse Cosine Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)

Inverse Secant Arcsec(X) = Atn(X / Sqr(X * X – 1)) + Sgn((X) – 1) * (2 * Atn(1))

Inverse Cosecant Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) – 1) * (2 * Atn(1))

Inverse Cotangent Arccotan(X) = Atn(X) + 2 * Atn(1)

Hyperbolic Sine HSin(X) = (Exp(X) – Exp(-X)) / 2

Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2

Hyperbolic Tangent HTan(X) = (Exp(X) – Exp(-X)) / (Exp(X) + Exp(-X))

Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X))

Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) – Exp(-X))

Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) – Exp(-X))

Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse Hyperbolic Cosine HArccos(X) = Log(X + Sqr(X * X – 1))

Inverse Hyperbolic Tangent HArctan(X) = Log((1 + X) / (1 – X)) / 2

Inverse Hyperbolic Secant HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)

Inverse Hyperbolic Cotangent HArccotan(X) = Log((X + 1) / (X – 1)) / 2

Logarithm to base N LogN(X) = Log(X) / Log(N)

Aaron Wirth

15

Logic
Mod Operator
Syntax
result = number1 Mod number2

The Mod operator syntax has these parts:

Part Description

result Required; any numeric variable.

number1 Required; any numeric expression.

number2 Required; any numeric expression.

Remarks
The modulus, or remainder, operator divides number1 by number2 (rounding floating-point numbers to
integers) and returns only the remainder as result. For example, in the following expression, A (result) equals 5.
A = 19 Mod 6.7

Example:
Dim MyResult
MyResult = 10 Mod 5 ' Returns 0.
MyResult = 10 Mod 3 ' Returns 1.
MyResult = 12 Mod 4.3 ' Returns 0.
MyResult = 12.6 Mod 5 ' Returns 3.

And Operator
Used to perform a logical conjunction on two expressions..
Syntax
result = expression1 And expression2

The And operator syntax has these parts:

Part Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks
If both expressions evaluate to True, result is True. If either expression evaluates to False, result is False. The
following table illustrates how result is determined:

If expression1 is And expression2 is The result is

True True True

True False False

True Null Null

False True False

False False False

False Null False

Null True Null

Aaron Wirth

16

Null False False

Null Null Null

Example:
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B And B > C ' Returns True.
MyCheck = B > A And B > C ' Returns False.
MyCheck = A > B And B > D ' Returns Null.

Or Operator
Used to perform a logical disjunction on two expressions.
Syntax
result = expression1 Or expression2

The Or operator syntax has these parts:

Part Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks
If either or both expressions evaluate to True, result is True. The following table illustrates how result is
determined:

If expression1 is And expression2 is Then result is

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

Example:
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Or B > C ' Returns True.
MyCheck = B > A Or B > C ' Returns True.
MyCheck = A > B Or B > D ' Returns True.
MyCheck = B > D Or B > A ' Returns Null.

Aaron Wirth

17

Xor Operator
Used to perform a logical exclusion on two expressions.
Syntax
[result =] expression1 Xor expression2

The Xor operator syntax has these parts:

Part Description

result Optional; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks
If one, and only one, of the expressions evaluates to True, result is True. However, if either expression is Null,
result is also Null. When neither expression is Null, result is determined according to the following table:

If expression1 is And expression2 is Then result is

True True False

True False True

False True True

False False False

Example:
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Xor B > C ' Returns False.
MyCheck = B > A Xor B > C ' Returns True.
MyCheck = B > A Xor C > B ' Returns False.
MyCheck = B > D Xor A > B ' Returns Null.

If Not
If Not is the exact opposite of If, the code segment will run if a condition is False.

Example:
Dim Done As Boolean
Done = True
If Not Done Then LetsFinish
The LetsFinish procedure will not run. Notice we just used the boolean variable by itself. If Not Done is
equivalent to If Done = False and If Done is the same as If Done = True.

Like operator
Used to compare two strings.
Syntax
result = string Like pattern

The Like operator syntax has these parts:

Part Description

result Required; any numeric variable.

string Required; any string expression.

pattern Required; any string expression conforming to the pattern-matching conventions described in
Remarks.

Aaron Wirth

18

Remarks
If string matches pattern, result is True; if there is no match, result is False. If either string or pattern is Null,
result is Null.
The behavior of the Like operator depends on the Option Compare statement. The default string-comparison
method for each module is Option Compare Binary.
Built-in pattern matching provides a versatile tool for string comparisons. The pattern-matching features allow
you to use wildcard characters, character lists, or character ranges, in any combination, to match strings. The
following table shows the characters allowed in pattern and what they match:

Characters in
pattern

Matches in string

? Any single character.

* Zero or more characters.

Any single digit (0–9).

[charlist] Any single character in charlist.

[!charlist] Any single character not in charlist.

Example:
Dim Name As String
Name = InputBox("Enter your name")
Find out if user's name begins with a J
If sName$ Like "J*" Then
 (code segment)
End If

Is Operator
Used to compare two object reference variables.
Syntax
result = object1 Is object2
The Is operator syntax has these parts:

Part Description

result Required; any numeric variable.

object1 Required; any object name.

object2 Required; any object name.

Remarks
If object1 and object2 both refer to the same object, result is True; if they do not, result is False. Two variables
can be made to refer to the same object in several ways.

Example:
MyCheck = YourObject Is ThisObject ' Returns True.
MyCheck = ThatObject Is ThisObject ' Returns False.

Aaron Wirth

19

Arrays
Erase statement
Reinitializes the elements of fixed-size arrays and releases dynamic-array storage space.
Syntax
Erase arraylist

The required arraylist argument is one or more comma-delimited array variables to be erased.

Remarks
Erase behaves differently depending on whether an array is fixed-size (ordinary) or dynamic. Erase recovers
no memory for fixed-size arrays. Erase sets the elements of a fixed array as follows:

Type of Array Effect of Erase on Fixed-Array Elements

Fixed numeric array Sets each element to zero.

Fixed string array (variable
length)

Sets each element to a zero-length string ("").

Fixed string array (fixed
length)

Sets each element to zero.

Fixed Variant array Sets each element to Empty.

Array of user-defined types Sets each element as if it were a separate variable.

Array of objects Sets each element to the special value Nothing.

Example:
Erase sMessage
In a regular array, the Erase statement will simply initialize all the elements. (False for Boolean, 0 for numbers,
and "" for strings). In a dynamic array, Erase will also release all the memory allocated to the array.

Dim
Dim statement placed right in the procedure where it's going to be used. The value of a procedure level variable
cannot be accessed outside it's procedure. When the procedure finishes (End Sub or End Function), the variable
is destroyed and memory allocated to the variable is released.

Example:
Dim Word As String

ReDim
Used at procedure level to reallocate storage space for dynamic array variables.
Syntax
ReDim [Preserve] varname(subscripts) [As type] [, varname(subscripts) [As type]] . . .

The ReDim statement syntax has these parts:

Part Description

Preserve Optional. Keyword used to preserve the data in an existing array when you change the size
of the last dimension.

varname Required. Name of the variable; follows standard variable naming conventions.

subscripts Required. Dimensions of an array variable; up to 60 multiple dimensions may be declared.
The subscripts argument uses the following syntax:
[lower To] upper [,[lower To] upper] . . .
When not explicitly stated in lower, the lower bound of an array is controlled by the
Option Base statement. The lower bound is zero if no Option Base statement is present.

Aaron Wirth

20

type Optional. Data type of the variable; may be Byte, Boolean, Integer, Long, Currency,
Single, Double, Decimal (not currently supported), Date, String (for variable-length
strings), String * length (for fixed-length strings), Object, Variant, a user-defined type, or
an object type. Use a separate As type clause for each variable being defined. For a
Variant containing an array, type describes the type of each element of the array, but
doesn't change the Variant to some other type.

Remarks
The ReDim statement is used to size or resize a dynamic array that has already been formally declared using a
Private, Public, or Dim statement with empty parentheses (without dimension subscripts).

Example:
Dim X(10, 10, 10)
[Code]
ReDim Preserve X(10, 10, 15)

Array Function
Returns a Variant containing an array.
Syntax
Array(arglist)

The required arglist argument is a comma-delimited list of values that are assigned to the elements of the array
contained within the Variant. If no arguments are specified, an array of zero length is created.
Remarks
The notation used to refer to an element of an array consists of the variable name followed by parentheses
containing an index number indicating the desired element. In the following example, the first statement creates
a variable named A as a Variant. The second statement assigns an array to variable A. The last statement
assigns the value contained in the second array element to another variable.

Example:
Dim MyWeek, MyDay
MyWeek = Array("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
' Return values assume lower bound set to 1 (using Option Base
' statement).
MyDay = MyWeek(2) ' MyDay contains "Tue".
MyDay = MyWeek(4) ' MyDay contains "Thu".

Aaron Wirth

21

Files/Folders
Dir
Returns a String representing the name of a file, directory, or folder that matches a specified pattern or file
attribute, or the volume label of a drive.
Syntax
Dir[(pathname[, attributes])]

The Dir function syntax has these parts:

Part Description

pathname Optional. String expression that specifies a file name — may include directory or
folder, and drive. A zero-length string ("") is returned if pathname is not found.

attributes Optional. Constant or numeric expression, whose sum specifies file attributes. If
omitted, returns files that match pathname but have no attributes.

Settings
The attributes argument settings are:

Constant Value Description

vbNormal 0 (Default) Specifies files with no attributes.

vbReadOnly 1 Specifies read-only files in addition to files with no
attributes.

vbHidden 2 Specifies hidden files in addition to files with no
attributes.

VbSystem 4 Specifies system files in addition to files with no
attributes. Not available on the Macintosh.

vbVolume 8 Specifies volume label; if any other attributed is
specified, vbVolume is ignored. Not available on the
Macintosh.

vbDirectory 16 Specifies directories or folders in addition to files
with no attributes.

vbAlias 64 Specified file name is an alias. Available only on the
Macintosh.

Note These constants are specified by Visual Basic for Applications and can be used anywhere in your code in
place of the actual values.

Example:
If Dir("c:\windows\win.ini") = "win.ini" Then
 MsgBox "File exists"
Else
 MsgBox "File does not exist"
End If

Aaron Wirth

22

ChDir
Changes the current directory or folder.
Syntax
ChDir path

The required path argument is a string expression that identifies which directory or folder becomes the new
default directory or folder. The path may include the drive. If no drive is specified, ChDir changes the default
directory or folder on the current drive.
Remarks
The ChDir statement changes the default directory but not the default drive. For example, if the default drive is
C, the following statement changes the default directory on drive D, but C remains the default drive.
Example:
Dim Path as string
Dir(“C:\NewFolder”) = Path
Path = ChDir(“C:\MyFolder”)

ChDrive
Changes the current drive.
Syntax
ChDrive drive

The required drive argument is a string expression that specifies an existing drive. If you supply a zero-length
string (""), the current drive doesn't change. If the drive argument is a multiple-character string, ChDrive uses
only the first letter.

Example:
ChDrive "D" ' Make "D" the current drive.

CurDir
Returns a Variant (String) representing the current path.
Syntax
CurDir[(drive)]

The optional drive argument is a string expression that specifies an existing drive. If no drive is specified or if
drive is a zero-length string (""), CurDir returns the path for the current drive. On the Macintosh, CurDir
ignores any drive specified and simply returns the path for the current drive.

Example:
' Assume current path on C drive is "C:\WINDOWS\SYSTEM" (on Microsoft Windows).
' Assume current path on D drive is "D:\EXCEL".
' Assume C is the current drive.
Dim MyPath
MyPath = CurDir ' Returns "C:\WINDOWS\SYSTEM".
MyPath = CurDir("C") ' Returns "C:\WINDOWS\SYSTEM".
MyPath = CurDir("D") ' Returns "D:\EXCEL".

MkDir
Creates a new directory or folder.
Syntax
MkDir path

The required path argument is a string expression that identifies the directory or folder to be created. The path
may include the drive. If no drive is specified, MkDir creates the new directory or folder on the current drive.

Example:
‘Creates a folder called ‘New Folder’
MkDir “C:\New Folder”

Aaron Wirth

23

RmDir Function
Removes an existing directory or folder.
Syntax
RmDir path

The required path argument is a string expression that identifies the directory or folder to be removed. The path
may include the drive. If no drive is specified, RmDir removes the directory or folder on the current drive.
Remarks
An error occurs if you try to use RmDir on a directory or folder containing files. Use the Kill statement to
delete all files before attempting to remove a directory or folder.

Example:
RmDir "c:\windows\pictures"

Kill Function
Deletes files from a disk.
Syntax

Kill pathname
The required pathname argument is a string expression that specifies one or more file names to be deleted. The
pathname may include the directory or folder, and the drive.

Example:
Kill "c:\Blah.txt”

FileDateTime
Returns a Variant (Date) that indicates the date and time when a file was created or last modified.
Syntax
FileDateTime(pathname)

The required pathname argument is a string expression that specifies a file name. The pathname may include
the directory or folder, and the drive.

Example:
Dim MyStamp
' Assume TESTFILE was last modified on September 2, 2005 at 4:00:00 PM.
MyStamp = FileDateTime "c:\Blah.txt” ' Returns "2/9/05 4:00:00 PM".

FileLen
Returns a Long specifying the length of a file in bytes.
Syntax
FileLen(pathname)

The required pathname argument is a string expression that specifies a file. The pathname may include the
directory or folder, and the drive.
Remarks
If the specified file is open when the FileLen function is called, the value returned represents the size of the file
immediately before it was opened.
Note To obtain the length of an open file, use the LOF function.

Example:
Dim Size
Size = FileLen("TESTFILE") ' Returns file length (bytes).

Aaron Wirth

24

FileCopy
Copies a file.
Syntax
FileCopy source, destination

The FileCopy statement syntax has these named arguments:

Part Description

source Required. String expression that specifies the name of the file to be copied. The source
may include directory or folder, and drive.

destination Required. String expression that specifies the target file name. The destination may
include directory or folder, and drive.

Remarks
If you try to use the FileCopy statement on a currently open file, an error occurs.

Cut, Copy & Pasting Text
The Clipboard object represents the Windows clipboard which is available to all running applications, therefore
you can allow your users to place text or pictures on the Clipboard and paste them anywhere they like.
Setting up menu items for cut, copy, and pasting from and into one TextBox is fairly simple.

Example:
Private Sub mnuCopy_Click()
 Clipboard.Clear
 Clipboard.SetText txtMain.SelText
End Sub

Private Sub mnuCut_Click()
 Clipboard.Clear
 Clipboard.SetText txtMain.SelText
 txtMain.SelText = ""
End Sub

Private Sub mnuPaste_Click()
 txtMain.SelText = Clipboard.GetText
End Sub

GetAttr
Returns an Integer representing the attributes of a file, directory, or folder.
Syntax
GetAttr(pathname)

The required pathname argument is a string expression that specifies a file name. The pathname may include
the directory or folder, and the drive.
Return Values
The value returned by GetAttr is the sum of the following attribute values:

Constant Value Description

vbNormal 0 Normal.

vbReadOnly 1 Read-only.

vbHidden 2 Hidden.

vbSystem 4 System file. Not available on the Macintosh.

vbDirectory 16 Directory or folder.

Aaron Wirth

25

vbArchive 32 File has changed since last backup. Not available on the Macintosh.

vbAlias 64 Specified file name is an alias. Available only on the Macintosh.

Note These constants are specified by Visual Basic for Applications. The names can be used anywhere in your
code in place of the actual values.

SetAttr
Sets attribute information for a file.
Syntax
SetAttr pathname, attributes

The SetAttr statement syntax has these named arguments:

Part Description

pathname Required. String expression that specifies a file name — may include directory or
folder, and drive.

attributes Required. Constant or numeric expression, whose sum specifies file attributes.

Settings
The attributes argument settings are:

Constant Value Description

vbNormal 0 Normal (default).

vbReadOnly 1 Read-only.

vbHidden 2 Hidden.

vbSystem 4 System file. Not available on the
Macintosh.

vbArchive 32 File has changed since last backup.

vbAlias 64 Specified file name is an alias.
Available only on the Macintosh.

FreeFile function
Returns an Integer representing the next file number available for use by the Open statement.
Syntax
FreeFile[(rangenumber)]

The optional rangenumber argument is a Variant that specifies the range from which the next free file number is
to be returned. Specify a 0 (default) to return a file number in the range 1 – 255, inclusive. Specify a 1 to return
a file number in the range 256 – 511.
Remarks
Use FreeFile to supply a file number that is not already in use.

Example:
Dim MyIndex, FileNumber
For MyIndex = 1 To 5 ' Loop 5 times.
 FileNumber = FreeFile ' Get unused file
 ' number.
 Open "TEST" & MyIndex For Output As #FileNumber ' Create file name.
 Write #FileNumber, "This is a sample." ' Output text.
 Close #FileNumber ' Close file.
Next MyIndex

Aaron Wirth

26

Open Function
Enables input/output (I/O) to a file.
Syntax
Open pathname For mode [Access access] [lock] As [#]filenumber [Len=reclength]

The Open statement syntax has these parts:

Part Description

pathname Required. String expression that specifies a file name — may include directory or folder,
and drive.

mode Required. Keyword specifying the file mode: Append, Binary, Input, Output, or
Random. If unspecified, the file is opened for Random access.

access Optional. Keyword specifying the operations permitted on the open file: Read, Write, or
Read Write.

lock Optional. Keyword specifying the operations restricted on the open file by other processes:
Shared, Lock Read, Lock Write, and Lock Read Write.

filenumber Required. A valid file number in the range 1 to 511, inclusive. Use the FreeFile function to
obtain the next available file number.

reclength Optional. Number less than or equal to 32,767 (bytes). For files opened for random access,
this value is the record length. For sequential files, this value is the number of characters
buffered.

Remarks
Output: use the print statement to print something in a file.
Input: use this to open and read a file.
Append: use this to write something into the file but keep what is already in the file.
Binary: use this for binary access files
Random: use this for random access files
You must open a file before any I/O operation can be performed on it. Open allocates a buffer for I/O to the file
and determines the mode of access to use with the buffer.
If the file specified by pathname doesn't exist, it is created when a file is opened for Append, Binary, Output,
or Random modes.
If the file is already opened by another process and the specified type of access is not allowed, the Open
operation fails and an error occurs.
The Len clause is ignored if mode is Binary.
Important In Binary, Input, and Random modes, you can open a file using a different file number without
first closing the file. In Append and Output modes, you must close a file before opening it with a different file
number.

Example:
Open “a:\gordon.txt” For Output As #1
 Print #1, Text1.Text ‘prints Text1 into the file
Close #1

Aaron Wirth

27

Close Statement
Concludes input/output (I/O) to a file opened using the Open statement.
Syntax
Close [filenumberlist]

The optional filenumberlist argument can be one or more file numbers using the following syntax, where
filenumber is any valid file number:
[[#]filenumber] [, [#]filenumber] . . .

Remarks
If you omit filenumberlist, all active files opened by the Open statement are closed.
When you close files that were opened for Output or Append, the final buffer of output is written to the
operating system buffer for that file. All buffer space associated with the closed file is released.
When the Close statement is executed, the association of a file with its file number ends.

Line Input
Reads a single line from an open sequential file and assigns it to a String variable.
Syntax
Line Input #filenumber, varname

The Line Input # statement syntax has these parts:

Part Description

filenumber Required. Any valid file number.

varname Required. Valid Variant or String variable name.

Remarks
Data read with Line Input # is usually written from a file with Print #.

Example:
Open “a:\gordon.txt” For Input As #1
 Line Input #1, TextLine ' Read line into variable.
Close #1

EOF Function
Returns an Integer containing the Boolean value True when the end of a file opened for Random or sequential
Input has been reached.
Syntax
EOF(filenumber)

The required filenumber argument is an Integer containing any valid file number.
Remarks
Use EOF to avoid the error generated by attempting to get input past the end of a file.
The EOF function returns False until the end of the file has been reached. With files opened for Random or
Binary access, EOF returns False until the last executed Get statement is unable to read an entire record.
With files opened for Binary access, an attempt to read through the file using the Input function until EOF
returns True generates an error. Use the LOF and Loc functions instead of EOF when reading binary files with
Input, or use Get when using the EOF function. With files opened for Output, EOF always returns True.

Example:
dim templine as string
Open “a:\ratbag.txt” For Input As 1
 Do Until EOF(1)
 Line Input #1, templine
 Text1.Text = text1.text + templine
 Loop
Close #1

Aaron Wirth

28

Lof Function
Returns a Long representing the size, in bytes, of a file opened using the Open statement.
Syntax
LOF(filenumber)

The required filenumber argument is an Integer containing a valid file number.
Note Use the FileLen function to obtain the length of a file that is not open.

Example:
Dim FileLength
Open "TESTFILE" For Input As #1 ' Open file.
FileLength = LOF(1) ' Get length of file.
Close #1 ' Close file.

Print Function
Writes display-formatted data to a sequential file.
Syntax
Print #filenumber, [outputlist]

The Print # statement syntax has these parts:

Part Description

filenumber Required. Any valid file number.

outputlist Optional. Expression or list of expressions to print.

Remarks
Data written with Print # is usually read from a file with Line Input # or Input.

Example:
Open App.Path & "\myFile.txt" For Output As #1
 Print #1, "Blah, Blah" + Text1.Text
Close #1

Aaron Wirth

29

Error Handling
On Error Statement
Enables an error-handling routine and specifies the location of the routine within a procedure; can also be used
to disable an error-handling routine.
Syntax
On Error GoTo line
On Error Resume Next
On Error GoTo 0

The On Error statement syntax can have any of the following forms:

Statement Description

On Error GoTo line Enables the error-handling routine that starts at line specified in the required
line argument. The line argument is any line label or line number. If a run-
time error occurs, control branches to line, making the error handler active.
The specified line must be in the same procedure as the On Error statement;
otherwise, a compile-time error occurs.

On Error Resume Next Specifies that when a run-time error occurs, control goes to the statement
immediately following the statement where the error occurred where
execution continues. Use this form rather than On Error GoTo when
accessing objects.

On Error GoTo 0 Disables any enabled error handler in the current procedure.

Remarks
If you don't use an On Error statement, any run-time error that occurs is fatal; that is, an error message is
displayed and execution stops.

Resume, Resume Next, Resume Line ()
Resumes execution after an error-handling routine is finished.
Syntax
Resume [0]
Resume Next
Resume line

The Resume statement syntax can have any of the following forms:

Statement Description

Resume If the error occurred in the same procedure as the error handler, execution resumes
with the statement that caused the error. If the error occurred in a called procedure,
execution resumes at the statement that last called out of the procedure containing the
error-handling routine.

Resume Next If the error occurred in the same procedure as the error handler, execution resumes
with the statement immediately following the statement that caused the error. If the
error occurred in a called procedure, execution resumes with the statement
immediately following the statement that last called out of the procedure containing
the error-handling routine (or On Error Resume Next statement).

Resume line Execution resumes at line specified in the required line argument. The line argument
is a line label or line number and must be in the same procedure as the error handler.

Remarks
If you use a Resume statement anywhere except in an error-handling routine, an error occurs.

Aaron Wirth

30

Example:
Private Sub

…
On Error GoTo Error

End Sub
Error:
…
Resume

Error Function
Simulates the occurrence of an error.
Syntax
Error errornumber

The required errornumber can be any valid error number.
Remarks
The Error statement is supported for backward compatibility. In new code, especially when creating objects,
use the Err object's Raise method to generate run-time errors.
If errornumber is defined, the Error statement calls the error handler after the properties of Err object are
assigned the following default values:

Property Value

Number Value specified as argument to Error statement. Can be any valid error number.

Source Name of the current Visual Basic project.

Description String expression corresponding to the return value of the Error function for the
specified Number, if this string exists. If the string doesn't exist, Description contains
a zero-length string ("").

HelpFile The fully qualified drive, path, and file name of the appropriate Visual Basic Help file.

HelpContext The appropriate Visual Basic Help file context ID for the error corresponding to the
Number property.

LastDLLError Zero.

Example:
On Error Resume Next ' Defer error handling.
Error 11 ' Simulate the "Division by zero" error.

Aaron Wirth

31

Declarations
Function Procedures
Declares the name, arguments, and code that form the body of a Function procedure.
Syntax
[Public | Private | Friend] [Static] Function name [(arglist)] [As type]
[statements]
[name = expression]
[Exit Function]
[statements]
[name = expression]

End Function
The Function statement syntax has these parts:

Part Description

Public Optional. Indicates that the Function procedure is accessible to all other procedures in all
modules. If used in a module that contains an Option Private, the procedure is not
available outside the project.

Private Optional. Indicates that the Function procedure is accessible only to other procedures in
the module where it is declared.

Friend Optional. Used only in a class module. Indicates that the Function procedure is visible
throughout the project, but not visible to a controller of an instance of an object.

Static Optional. Indicates that the Function procedure's local variables are preserved between
calls. The Static attribute doesn't affect variables that are declared outside the Function,
even if they are used in the procedure.

name Required. Name of the Function; follows standard variable naming conventions.

arglist Optional. List of variables representing arguments that are passed to the Function
procedure when it is called. Multiple variables are separated by commas.

type Optional. Data type of the value returned by the Function procedure; may be Byte,
Boolean, Integer, Long, Currency, Single, Double, Decimal (not currently supported),
Date, String, or (except fixed length), Object, Variant, or any user-defined type.

statements Optional. Any group of statements to be executed within the Function procedure.

expression Optional. Return value of the Function.

The arglist argument has the following syntax and parts:
[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description

Optional Optional. Indicates that an argument is not required. If used, all subsequent arguments in
arglist must also be optional and declared using the Optional keyword. Optional can't be
used for any argument if ParamArray is used.

ByVal Optional. Indicates that the argument is passed by value.

ByRef Optional. Indicates that the argument is passed by reference. ByRef is the default in
Visual Basic.

ParamArray Optional. Used only as the last argument in arglist to indicate that the final argument is
an Optional array of Variant elements. The ParamArray keyword allows you to
provide an arbitrary number of arguments. It may not be used with ByVal, ByRef, or
Optional.

Aaron Wirth

32

varname Required. Name of the variable representing the argument; follows standard variable
naming conventions.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal (not currently supported) Date,
String (variable length only), Object, Variant, or a specific object type. If the parameter
is not Optional, a user-defined type may also be specified.

defaultvalue Optional. Any constant or constant expression. Valid for Optional parameters only. If the
type is an Object, an explicit default value can only be Nothing.

Remarks
If not explicitly specified using Public, Private, or Friend, Function procedures are public by default. If Static
isn't used, the value of local variables is not preserved between calls. The Friend keyword can only be used in
class modules. However, Friend procedures can be accessed by procedures in any module of a project. A
Friend procedure does't appear in the type library of its parent class, nor can a Friend procedure be late bound.

Const
Declares constants for use in place of literal values.
Syntax
[Public | Private] Const constname [As type] = expression

The Const statement syntax has these parts:

Part Description

Public Optional. Keyword used at module level to declare constants that are available to all
procedures in all modules. Not allowed in procedures.

Private Optional. Keyword used at module level to declare constants that are available only within
the module where the declaration is made. Not allowed in procedures.

constname Required. Name of the constant; follows standard variable naming conventions.

type Optional. Data type of the constant; may be Byte, Boolean, Integer, Long, Currency,
Single, Double, Decimal (not currently supported), Date, String, or Variant. Use a separate
As type clause for each constant being declared.

expression Required. Literal, other constant, or any combination that includes all arithmetic or logical
operators except Is.

Remarks
Constants are private by default. Within procedures, constants are always private; their visibility can't be
changed. In standard modules, the default visibility of module-level constants can be changed using the Public
keyword. In class modules, however, constants can only be private and their visibility can't be changed using
the Public keyword.

Example:
' Constants are Private by default.
Const MyVar = 459
' Declare Public constant.
Public Const MyString = "HELP"
' Declare Private Integer constant.
Private Const MyInt As Integer = 5
' Declare multiple constants on same line.
Const MyStr = "Hello", MyDouble As Double = 3.4567

Aaron Wirth

33

Call Statement
Transfers control to a Sub procedure, Function procedure, or dynamic-link library (DLL) procedure.
Syntax
[Call] name [argumentlist]

The Call statement syntax has these parts:

Part Description

Call Optional; keyword. If specified, you must enclose argumentlist in parentheses. For
example:

Call MyProc(0)

name Required. Name of the procedure to call.

argumentlist Optional. Comma-delimited list of variables, arrays, or expressions to pass to the
procedure. Components of argumentlist may include the keywords ByVal or ByRef to
describe how the arguments are treated by the called procedure. However, ByVal and
ByRef can be used with Call only when calling a DLL procedure. On the Macintosh,
ByVal and ByRef can be used with Call when making a call to a Macintosh code
resource.

Remarks
You are not required to use the Call keyword when calling a procedure. However, if you use the Call keyword
to call a procedure that requires arguments, argumentlist must be enclosed in parentheses.

Example:
Call an intrinsic function. The return value of the function is
' discarded.
Call Shell(AppName, 1) ' AppName contains the path of the
 ' executable file.

CallByName
Executes a method of an object, or sets or returns a property of an object.
Syntax
CallByName(object, procname, calltype,[args()])
The CallByName function syntax has these named arguments:

Part Description

object Required; Variant (Object). The name of the object on which the function will be
executed.

procname Required; Variant (String). A string expression containing the name of a property or
method of the object.

calltype Required; Constant. A constant of type vbCallType representing the type of
procedure being called.

args() Optional: Variant (Array).

Remarks
The CallByName function is used to get or set a property, or invoke a method at run time using a string name.

Example:

Aaron Wirth

34

CallByName Text1, "MousePointer", vbLet, vbCrosshair
Result = CallByName (Text1, "MousePointer", vbGet)
CallByName Text1, "Move", vbMethod, 100, 100

Option Explicit
Used at module level to force explicit declaration of all variables in that module.
Syntax
Option Explicit

Remarks
If used, the Option Explicit statement must appear in a module before any procedures.
When Option Explicit appears in a module, you must explicitly declare all variables using the Dim, Private,
Public, ReDim, or Static statements. If you attempt to use an undeclared variable name, an error occurs at
compile time.
If you don't use the Option Explicit statement, all undeclared variables are of Variant type unless the default
type is otherwise specified with a Deftype statement.

Example:
Option explicit ' Force explicit variable declaration.
Dim MyVar ' Declare variable.
MyInt = 10 ' Undeclared variable generates error.
MyVar = 10 ' Declared variable does not generate error.

Option Private
When used in host applications that allow references across multiple projects, Option Private Module prevents
a module’s contents from being referenced outside its project. In host applications that don’t permit such
references, for example, standalone versions of Visual Basic, Option Private has no effect.
Syntax
Option Private Module

Remarks
If used, the Option Private statement must appear at module level, before any procedures.
When a module contains Option Private Module, the public parts, for example, variables, objects, and user-
defined types declared at module level, are still available within the project containing the module, but they are
not available to other applications or projects.

Example:
Option private Module ' Indicates that module is private.

Option Compare
Used at module level to declare the default comparison method to use when string data is compared.
Syntax
Option Compare {Binary | Text | Database}

Remarks
If used, the Option Compare statement must appear in a module before any procedures.
The Option Compare statement specifies the string comparison method (Binary, Text, or Database) for a
module. If a module doesn't include an Option Compare statement, the default text comparison method is
Binary.
Option Compare Binary results in string comparisons based on a sort order derived from the internal binary
representations of the characters. In Microsoft Windows, sort order is determined by the code page. A typical
binary sort order is shown in the following example:
A < B < E < Z < a < b < e < z < À < Ê < Ø < à < ê < ø
Option Compare Text results in string comparisons based on a case-insensitive text sort order determined by
your system's locale. When the same characters are sorted using Option Compare Text, the following text sort
order is produced:
(A=a) < (À=à) < (B=b) < (E=e) < (Ê=ê) < (Z=z) < (Ø=ø)
Example:
Set the string comparison method to Binary.

Aaron Wirth

35

Option compare Binary ' That is, "AAA" is less than "aaa".
' Set the string comparison method to Text.
Option compare Text ' That is, "AAA" is equal to "aaa".

Type…End Type
Used at module level to define a user-defined data thype containing one or more elements.
Syntax
[Private | Public] Type varname
elementname [([subscripts])] As type
[elementname [([subscripts])] As type]
. . .
End Type

The Type statement syntax has these parts:

Part Description

Public Optional. Used to declare user-defined htypes that are available to all procedures in all
modules in all projects.

Private Optional. Used to declare user-defined types that are available only within the module
where the declaration is made.

varname Required. Name of the user-defined type; follows standard variable naming
conventions.

elementname Required. Name of an element of the user-defined type. Element names also follow
standard variable naming conventions, except that keywords can be used.

subscripts When not explicitly stated in lower, the lower bound of an array is controlled by the
Option Base statement. The lower bound is zero if no Option Base statement is
present.

type Required. Data type of the element; may be Byte, Boolean, Integer, Long, Currency,
Single, Double, Decimal (not currently supported), Date, String (for variable-length
strings), String * length (for fixed-length strings), Object, Variant, another user-
defined type, or an object type.

Remarks
The Type statement can be used only at module level. Once you have declared a user-defined type using the
Type statement, you can declare a variable of that type anywhere within the scope of the declaration. Use Dim,
Private, Public, ReDim, or Static to declare a variable of a user-defined type.

Example:
Type StateData
 CityCode (1 To 100) As Integer ' Declare a static array.
 County As String * 30
End Type

Dim Washington(1 To 100) As StateData

GetObject
Returns a reference to an object provided by an ActiveX component.
Syntax
GetObject([pathname] [, class])

The GetObject function syntax has these named arguments:

Part Description

Aaron Wirth

36

pathname Optional; Variant (String). The full path and name of the file containing the object to
retrieve. If pathname is omitted, class is required.

class Optional; Variant (String). A string representing the class of the object.

The class argument uses the syntax appname.objecttype and has these parts:

Part Description

appname Required; Variant (String). The name of the application providing the object.

objecttype Required; Variant (String). The type or class of object to create.

Remarks
Use the GetObject function to access an ActiveX object from a file and assign the object to an object variable.
Use the Set statement to assign the object returned by GetObject to the object variable.

Example:
Dim CADObject As Object
Set CADObject = GetObject("C:\CAD\SCHEMA.CAD")

CreateObject
Creates and returns a reference to an ActiveX object.
Syntax
CreateObject(class,[servername])

The CreateObject function syntax has these parts:

Part Description

class Required; Variant (String). The application name and class of the object to create.

servername Optional; Variant (String). The name of the network server where the object will be
created. If servername is an empty string (""), the local machine is used.

The class argument uses the syntax appname.objecttype and has these parts:

Part Description

appname Required; Variant (String). The name of the application providing the object.

objecttype Required; Variant (String). The type or class of object to create.

Remarks
Every application that supports Automation provides at least one type of object. For example, a word processing
application may provide an Application object, a Document object, and a Toolbar object.

Example:
Dim ExcelSheet As Object
Set ExcelSheet = CreateObject("Excel.Sheet")

Let Statement
Assigns the value of an expression to a variable or property.
Syntax
[Let] varname = expression

The Let statement syntax has these parts:

Part Description

Aaron Wirth

37

Let Optional. Explicit use of the Let keyword is a matter of style, but it is usually omitted.

varname Required. Name of the variable or property; follows standard variable naming conventions.

expression Required. Value assigned to the variable or property.

Remarks
A value expression can be assigned to a variable or property only if it is of a data type that is compatible with
the variable. You can't assign string expressions to numeric variables, and you can't assign numeric expressions
to string variables. If you do, an error occurs at compile time.
Variant variables can be assigned either string or numeric expressions. However, the reverse is not always true.
Any Variant except a Null can be assigned to a string variable, but only a Variant whose value can be
interpreted as a number can be assigned to a numeric variable. Use the IsNumeric function to determine if the
Variant can be converted to a number.

Example:
Dim MyStr, MyInt
' The following variable assignments use the Let statement.
Let MyStr = "Hello World"
Let MyInt = 5

TypeName
Returns a String that provides information about a variable.
Syntax
TypeName(varname)

The required varname argument is a Variant containing any variable except a variable of a user-defined type.
Remarks
The string returned by TypeName can be any one of the following:

String returned Variable

object thype An object whose type is objecttype

Byte Byte value

Integer Integer

Long Long integer

Single Single-precision floating-point number

Double Double-precision floating-point number

Currency Currency value

Decimal Decimal value

Date Date value

String String

Boolean Boolean value

Error An error value

Empty Uninitialized

Null No valid data

Aaron Wirth

38

Object An object

Unknown An object whose type is unknown

Nothing Object variable that doesn't refer to an object

If varname is an array, the returned string can be any one of the possible returned strings (or Variant) with
empty parentheses appended. For example, if varname is an array of integers, TypeName returns
"Integer()".

Example:
Dim MyType
MyType = TypeName(StrVar) ' Returns "String".
MyType = TypeName(IntVar) ' Returns "Integer".
MyType = TypeName(CurVar) ' Returns "Currency".
MyType = TypeName(NullVar) ' Returns "Null".
MyType = TypeName(ArrayVar) ' Returns "Integer()".

VarType
Returns an Integer indicating the subtype of a variable.
Syntax
VarType(varname)

The required varname argument is a Variant containing any variable except a variable of a user-defined type.
Return Values

Constant Value Description

vbEmpty 0 Empty (uninitialized)

vbNull 1 Null (no valid data)

vbInteger 2 Integer

vbLong 3 Long integer

vbSingle 4 Single-precision floating-point number

vbDouble 5 Double-precision floating-point number

vbCurrency 6 Currency value

vbDate 7 Date value

vbString 8 String

vbObject 9 Object

vbError 10 Error value

vbBoolean 11 Boolean value

vbVariant 12 Variant (used only with arrays of variants)

vbDataObject 13 A data access object

vbDecimal 14 Decimal value

vbByte 17 Byte value

Aaron Wirth

39

vbUserDefinedType 36 Variants that contain user-defined types

vbArray 8192 Array

Note These constants are specified by Visual Basic for Applications. The names can be used anywhere in your
code in place of the actual values.
Remarks
The VarType function never returns the value for vbArray by itself. It is always added to some other value to
indicate an array of a particular type. The constant vbVariant is only returned in conjunction with vbArray to
indicate that the argument to the VarType function is an array of type Variant. For example, the value returned
for an array of integers is calculated as vbInteger + vbArray, or 8194. If an object has a default property,
VarType (object) returns the type of the object's default property.

Example:
Dim IntVar, StrVar, DateVar, MyCheck
' Initialize variables.
IntVar = 459: StrVar = "Hello World": DateVar = #2/12/69#
MyCheck = VarType(IntVar) ' Returns 2.
MyCheck = VarType(DateVar) ' Returns 7.
MyCheck = VarType(StrVar) ' Returns 8.

DefType
Used at module level to set the default data type for variables, arguments passed to procedures, and the return
type for Function and Property Get procedures whose names start with the specified characters.
Syntax
DefBool letterrange[, letterrange] . . .
DefByte letterrange[, letterrange] . . .
DefInt letterrange[, letterrange] . . .
DefLng letterrange[, letterrange] . . .
DefCur letterrange[, letterrange] . . .
DefSng letterrange[, letterrange] . . .
DefDbl letterrange[, letterrange] . . .
DefDec letterrange[, letterrange] . . .
DefDate letterrange[, letterrange] . . .
DefStr letterrange[, letterrange] . . .
DefObj letterrange[, letterrange] . . .
DefVar letterrange[, letterrange] . . .

The required letterrange argument has the following syntax:
letter1[-letter2]
The letter1 and letter2 arguments specify the name range for which you can set a default data type. Each
argument represents the first letter of the variable, argument, Function procedure, or Property Get procedure
name and can be any letter of the alphabet. The case of letters in letterrange isn't significant.
Remarks
The statement name determines the data type:

Statement Data Type

DefBool Boolean

DefByte Byte

DefInt Integer

DefLng Long

DefCur Currency

DefSng Single

Aaron Wirth

40

DefDbl Double

DefDec Decimal (not currently supported)

DefDate Date

DefStr String

DefObj Object

DefVar Variant

A Deftype statement affects only the module where it is used. For example, a DefInt statement in one module
affects only the default data type of variables, arguments passed to procedures, and the return type for Function
and Property Get procedures declared in that module; the default data type of variables, arguments, and return
types in other modules is unaffected. If not explicitly declared with a Deftype statement, the default data type
for all variables, all arguments, all Function procedures, and all Property Get procedures is Variant.

Aaron Wirth

41

Date/Time
Date
Returns a Variant (Date) containing the current system date.
Syntax
Date

Remarks
To set the system date, use the Date statement.
Date, and if the calendar is Gregorian, Date$ behavior is unchanged by the Calendar property setting. If the
calendar is Hijri, Date$ returns a 10-character string of the form mm-dd-yyyy, where mm (01-12), dd (01-30)
and yyyy (1400-1523) are the Hijri month, day and year. The equivalent Gregorian range is Jan 1, 1980 through
Dec 31, 2099.

Example:
Dim s as Date
S = Date
Label1 = s

Time
Sets the system time.
Syntax
Time = time

The required time argument is any numeric expression, string expression, or any combination, that can represent
a time.
Remarks
If time is a string, Time attempts to convert it to a time using the time separators you specified for your system.
If it can't be converted to a valid time, an error occurs.

Example:
Private Sub Form_Load()
Dim s As Date
s = Time
Label1 = s
End Sub
‘Displays the Time in label1

Now
Returns a Variant (Date) specifying the current date and time according your computer's system date and time.
Syntax
Now

Example:
Private Sub Form_Load()
Dim s As Date
s = Now
Label1 = s
End Sub
‘Displays the date and time in label1

Timer
Timers execute code repeatedly according to the Interval you specify. Set the Interval property in milliseconds.
For example, 2000 = 2 seconds. Timers are useful for checking programs conditions periodically, but don't get
in the habit of using them for everything. A Timer control is not a clock and should not be relied upon to keep
accurate time.

Aaron Wirth

42

DateAdd
Returns a Variant (Date) containing a date to which a specified time interval has been added.
Syntax
DateAdd(interval, number, date)

The DateAdd function syntax has these named arguments:

Part Description

interval Required. String expression that is the interval of time you want to add.

number Required. Numeric expression that is the number of intervals you want to add. It can be
positive (to get dates in the future) or negative (to get dates in the past).

date Required. Variant (Date) or literal representing date to which the interval is added.

Settings
The interval argument has these settings:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Remarks
You can use the DateAdd function to add or subtract a specified time interval from a date. For example, you
can use DateAdd to calculate a date 30 days from today or a time 45 minutes from now.
To add days to date, you can use Day of Year ("y"), Day ("d"), or Weekday ("w").

Example:
DateAdd("m", 1, "31-Jan-95")
In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-96, it returns 29-Feb-96 because 1996
is a leap year.

DateDiff
Returns a Variant (Long) specifying the number of time intervals between two specified dates.
Syntax
DateDiff(interval, date1, date2[, firstdayofweek[, firstweekofyear]])

The DateDiff function syntax has these named arguments:

Part Description

interval Required. String expression that is the interval of time you use to calculate

Aaron Wirth

43

the difference between date1 and date2.

date1, date2 Required; Variant (Date). Two dates you want to use in the calculation.

firstdayofweek Optional. A constant that specifies the first day of the week. If not specified,
Sunday is assumed.

firstweekofyear Optional. A constant that specifies the first week of the year. If not specified,
the first week is assumed to be the week in which January 1 occurs.

Settings
The interval argument has these settings:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

The firstdayofweek argument has these settings:

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbFirstJan1 1 Start with week in which January 1
occurs (default).

vbFirstFourDays 2 Start with the first week that has at

Aaron Wirth

44

least four days in the new year.

vbFirstFullWeek 3 Start with first full week of the year.

Remarks
You can use the DateDiff function to determine how many specified time intervals exist between two dates. For
example, you might use DateDiff to calculate the number of days between two dates, or the number of weeks
between today and the end of the year.

Example:
Dim TheDate As Date ' Declare variables.
Dim Msg
TheDate = InputBox("Enter a date")
Msg = "Days from today: " & DateDiff("d", Now, TheDate)
MsgBox Msg
‘Displays difference between dates in number of days

DateSerial
Returns a Variant (Date) for a specified year, month, and day.
Syntax
DateSerial(year, month, day)

The DateSerial function syntax has these named arguments:

Part Description

year Required; Integer. Number between 100 and 9999, inclusive, or a numeric
expression.

month Required; Integer. Any numeric expression.

day Required; Integer. Any numeric expression.

Remarks
To specify a date, such as December 31, 1991, the range of numbers for each DateSerial argument should be in
the accepted range for the unit; that is, 1–31 for days and 1–12 for months. However, you can also specify
relative dates for each argument using any numeric expression that represents some number of days, months, or
years before or after a certain date.

Example:
Dim MyDate
' MyDate contains the date for February 12, 1969.
MyDate = DateSerial(1969, 2, 12) ' Return a date.

DateValue
Returns a Variant (Date).
Syntax
DateValue(date)

The required date argument is normally a string expression representing a date from January 1, 100 through
December 31, 9999. However, date can also be any expression that can represent a date, a time, or both a date
and time, in that range.
Remarks
If date is a string that includes only numbers separated by valid date separators, DateValue recognizes the order
for month, day, and year according to the Short Date format you specified for your system. DateValue also
recognizes unambiguous dates that contain month names, either in long or abbreviated form. For example, in
addition to recognizing 12/30/1991 and 12/30/91, DateValue also recognizes December 30, 1991 and Dec 30,
1991.

Aaron Wirth

45

Example:
Dim MyDate
MyDate = DateValue("February 12, 1969") ' Returns 12/02/1965

Year
Returns a Variant (Integer) containing a whole number representing the year.
Syntax
Year(date)

The required date argument is any Variant, numeric expression, string expression, or any combination, that can
represent a date. If date contains Null, Null is returned.

Example:
Dim MyDate, MyYear
MyDate = #February 12, 1969# ' Assign a date.
MyYear = Year(MyDate) ' MyYear contains 1969.

Month
Returns a Variant (Integer) specifying a whole number between 1 and 12, inclusive, representing the month of
the year.
Syntax
Month(date)

The required date argument is any Variant, numeric expression, string expression, or any combination, that can
represent a date. If date contains Null, Null is returned.

Example:
Dim MyDate, MyMonth
MyDate = #February 12, 1969# ' Assign a date.
MyMonth = Month(MyDate) ' MyMonth contains 2.

MonthName
Returns a string indicating the specified month.
Syntax
MonthName(month[, abbreviate])

The MonthName function syntax has these parts:

Part Description

month Required. The numeric designation of the month. For example, January is 1, February
is 2, and so on.

abbreviate Optional. Boolean value that indicates if the month name is to be abbreviated. If
omitted, the default is False, which means that the month name is not abbreviated.

Example:
Private Sub Form_Load()
Label1 = MonthName(11)
End Sub
‘Returns November

WeekDayName
Returns a string indicating the specified day of the week.
Syntax
WeekdayName(weekday, abbreviate, firstdayofweek)

The WeekdayName function syntax has these parts:

Aaron Wirth

46

Part Description

weekday Required. The numeric designation for the day of the week. Numeric value of each
day depends on setting of the firstdayofweek setting.

abbreviate Optional. Boolean value that indicates if the weekday name is to be abbreviated. If
omitted, the default is False, which means that the weekday name is not
abbreviated.

firstdayofweek Optional. Numeric value indicating the first day of the week. See Settings section
for values.

Settings
The firstdayofweek argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API setting.

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Example:
Label1 = WeekdayName(3)
‘Returns Wednesday

Day
Returns a Variant (Integer) specifying a whole number between 1 and 31, inclusive, representing the day of the
month.
Syntax
Day(date)

The required date argument is any Variant, numeric expression, string expression, or any combination, that can
represent a date. If date contains Null, Null is returned.

Example:
Dim MyDate, MyDay
MyDate = #February 12, 1969# ' Assign a date.
MyDay = Day(MyDate) ' MyDay contains 12.

Hour
Returns a Variant (Integer) specifying a whole number between 0 and 23, inclusive, representing the hour of
the day.
Syntax
Hour(time)
The required time argument is any Variant, numeric expression, string expression, or any combination, that can
represent a time. If time contains Null, Null is returned.

Aaron Wirth

47

Example:
Dim MyTime, MyHour
MyTime = #4:35:17 PM# ' Assign a time.
MyHour = Hour(MyTime) ' MyHour contains 16.

Minute
Returns a Variant (Integer) specifying a whole number between 0 and 59, inclusive, representing the minute of
the hour.
Syntax
Minute(time)

The required time argument is any Variant, numeric expression, string expression, or any combination, that can
represent a time. If time contains Null, Null is returned.

Example:
Dim MyTime, MyMinute
MyTime = #4:35:17 PM# ' Assign a time.
MyMinute = Minute(MyTime) ' MyMinute contains 35.

Second
Returns a Variant (Integer) specifying a whole number between 0 and 59, inclusive, representing the second of
the minute.
Syntax
Second(time)

The required time argument is any Variant, numeric expression, string expression, or any combination, that can
represent a time. If time contains Null, Null is returned.

Example:
Dim MyTime, MySecond
MyTime = #4:35:17 PM# ' Assign a time.
MySecond = Second(MyTime) ' MySecond contains 17.

TimeSerial
Returns a Variant (Date) containing the time for a specific hour, minute, and second.
Syntax
TimeSerial(hour, minute, second)

The TimeSerial function syntax has these named arguments:

Part Description

hour Required; Variant (Integer). Number between 0 (12:00 A.M.) and 23 (11:00
P.M.), inclusive, or a numeric expression.

minute Required; Variant (Integer). Any numeric expression.

second Required; Variant (Integer). Any numeric expression.

Remarks
To specify a time, such as 11:59:59, the range of numbers for each TimeSerial argument should be in the
normal range for the unit; that is, 0–23 for hours and 0–59 for minutes and seconds. However, you can also
specify relative times for each argument using any numeric expression that represents some number of hours,
minutes, or seconds before or after a certain time. The following example uses expressions instead of absolute
time numbers.

Example:
Dim MyTime
MyTime = TimeSerial(16, 35, 17) ' MyTime contains serial
 ' representation of 4:35:17 PM.

Aaron Wirth

48

TimeValue
Returns a Variant (Date) containing the time.
Syntax
TimeValue(time)

The required time argument is normally a string expression representing a time from 0:00:00 (12:00:00 A.M.) to
23:59:59 (11:59:59 P.M.), inclusive. However, time can also be any expression that represents a time in that
range. If time contains Null, Null is returned.

Example:
Dim MyTime
MyTime = TimeValue("4:35:17 PM") ' Returns 4:35:17 PM

WeekDay
Returns a Variant (Integer) containing a whole number representing the day of the week.
Syntax
Weekday(date, [firstdayofweek])

The Weekday function syntax has these named arguments:

Part Description

date Required. Variant, numeric expression, string expression, or any combination, that
can represent a date. If date contains Null, Null is returned.

firstdayofweek Optional. A constant that specifies the first day of the week. If not specified,
vbSunday is assumed.

Settings
The firstdayofweek argument has these settings:

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Return Values
The Weekday function can return any of these values:

Constant Value Description

vbSunday 1 Sunday

Aaron Wirth

49

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Example:
Dim MyDate, MyWeekDay
MyDate = #February 12, 1969# ' Assign a date.
MyWeekDay = Weekday(MyDate) ' MyWeekDay contains 4 because
 ' MyDate represents a Wednesday.

Aaron Wirth

50

Miscellaneous
MsgBox
Displays a message in a dialog box, waits for the user to click a button, and returns an Integer indicating which
button the user clicked.
Syntax
MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The MsgBox function syntax has these named arguments:

Part Description

prompt Required. String expression displayed as the message in the dialog box. The maximum length
of prompt is approximately 1024 characters, depending on the width of the characters used. If
prompt consists of more than one line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or carriage return – linefeed character
combination (Chr(13) & Chr(10)) between each line.

buttons Optional. Numeric expression that is the sum of values specifying the number and type of
buttons to display, the icon style to use, the identity of the default button, and the modality of
the message box. If omitted, the default value for buttons is 0.

title Optional. String expression displayed in the title bar of the dialog box. If you omit title, the
application name is placed in the title bar.

helpfile Optional. String expression that identifies the Help file to use to provide context-sensitive
Help for the dialog box. If helpfile is provided, context must also be provided.

context Optional. Numeric expression that is the Help context number assigned to the appropriate
Help topic by the Help author. If context is provided, helpfile must also be provided.

Settings
The buttons argument settings are:

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

Aaron Wirth

51

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must respond to the
message box before continuing work in the current
application.

vbSystemModal 4096 System modal; all applications are suspended until the
user responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box

VbMsgBoxSetForeground 65536 Specifies the message box window as the foreground
window

vbMsgBoxRight 524288 Text is right aligned

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left reading on
Hebrew and Arabic systems

Shell
Runs an executable program and returns a Variant (Double) representing the program's task ID if successful,
otherwise it returns zero.
Syntax
Shell(pathname[,windowstyle])

The Shell function syntax has these named arguments:

Part Description

pathname Required; Variant (String). Name of the program to execute and any required
arguments or command-line switches; may include directory or folder and drive.

windowstyle Optional. Variant (Integer) corresponding to the style of the window in which the
program is to be run. If windowstyle is omitted, the program is started minimized
with focus. On the Macintosh (System 7.0 or later), windowstyle only determines
whether or not the application gets the focus when it is run.

The windowstyle named argument has these values:

Constant Value Description

vbHide 0 Window is hidden and focus is passed to the hidden
window. The vbHide constant is not applicable on
Macintosh platforms.

vbNormalFocus 1 Window has focus and is restored to its original size and
position.

vbMinimizedFocus 2 Window is displayed as an icon with focus.

vbMaximizedFocus 3 Window is maximized with focus.

vbNormalNoFocus 4 Window is restored to its most recent size and position.
The currently active window remains active.

vbMinimizedNoFocus 6 Window is displayed as an icon. The currently active
window remains active.

Aaron Wirth

52

Remarks
If the Shell function successfully executes the named file, it returns the task ID of the started program. The task
ID is a unique number that identifies the running program. If the Shell function can't start the named program,
an error occurs.

Example:
' Specifying 1 as the second argument opens the application in
' normal size and gives it the focus.
Dim RetVal
RetVal = Shell("C:\WINDOWS\CALC.EXE", 1) ' Run Calculator.

RGB
Returns a Long whole number representing an RGB color value.
Syntax
RGB(red, green, blue)

The RGB function syntax has these named arguments:

Part Description

red Required; Variant (Integer). Number in the range 0–255, inclusive, that
represents the red component of the color.

green Required; Variant (Integer). Number in the range 0–255, inclusive, that
represents the green component of the color.

blue Required; Variant (Integer). Number in the range 0–255, inclusive, that
represents the blue component of the color.

Remarks
Application methods and properties that accept a color specification expect that specification to be a number
representing an RGB color value. An RGB color value specifies the relative intensity of red, green, and blue to
cause a specific color to be displayed.
The value for any argument to RGB that exceeds 255 is assumed to be 255.
The following table lists some standard colors and the red, green, and blue values they include:

Color Red Value Green Value Blue Value

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Cyan 0 255 255

Red 255 0 0

Magenta 255 0 255

Yellow 255 255 0

White 255 255 255

Example:
Dim RED, I, RGBValue, MyObject
Red = RGB(255, 0, 0) ' Return the value for Red.
I = 75 ' Initialize offset.
RGBValue = RGB(I, 64 + I, 128 + I) ' Same as RGB(75, 139, 203).
MyObject.Color = RGB(255, 0, 0) ' Set the Color property of
 ' MyObject to Red.

Aaron Wirth

53

QBColor
Returns a Long representing the RGB color code corresponding to the specified color number.
Syntax
QBColor(color)

The required color argument is a whole number in the range 0–15.
Settings
The color argument has these settings:

Number Color Number Color

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Yellow 14 Light Yellow

7 White 15 Bright White

Example:
Sub ChangeBackColor (ColorCode As Integer, MyForm As Form)
 MyForm.BackColor = QBColor(ColorCode)
End Sub

Beep
Sounds a tone through the computer's speaker.
Syntax
Beep

Remarks
The frequency and duration of the beep depend on your hardware and system software, and vary among
computers.

Example:
Dim I
For I = 1 To 3 ' Loop 3 times.
 Beep ' Sound a tone.
Next I

InputBox
Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns a String
containing the contents of the text box.
Syntax
InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

The InputBox function syntax has these named arguments:

Aaron Wirth

54

Part Description

prompt Required. String expression displayed as the message in the dialog box. The maximum
length of prompt is approximately 1024 characters, depending on the width of the
characters used. If prompt consists of more than one line, you can separate the lines using
a carriage return character (Chr(13)), a linefeed character (Chr(10)), or carriage return–
linefeed character combination (Chr(13) & Chr(10)) between each line.

title Optional. String expression displayed in the title bar of the dialog box. If you omit title,
the application name is placed in the title bar.

default Optional. String expression displayed in the text box as the default response if no other
input is provided. If you omit default, the text box is displayed empty.

xpos Optional. Numeric expression that specifies, in twips, the horizontal distance of the left
edge of the dialog box from the left edge of the screen. If xpos is omitted, the dialog box
is horizontally centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical distance of the upper
edge of the dialog box from the top of the screen. If ypos is omitted, the dialog box is
vertically positioned approximately one-third of the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to provide context-sensitive
Help for the dialog box. If helpfile is provided, context must also be provided.

context Optional. Numeric expression that is the Help context number assigned to the appropriate
Help topic by the Help author. If context is provided, helpfile must also be provided.

Example:
Dim Message, Title, Default, MyValue
Message = "Enter a value between 1 and 3" ' Set prompt.
Title = "InputBox Demo" ' Set title.
Default = "1" ' Set default.
' Display message, title, and default value.
MyValue = InputBox(Message, Title, Default)

' Use Helpfile and context. The Help button is added automatically.
MyValue = InputBox(Message, Title, , , , "DEMO.HLP", 10)

' Display dialog box at position 100, 100.
MyValue = InputBox(Message, Title, Default, 100, 100)

Load
Loads an object but doesn't show it.
Syntax
Load object

The object placeholder represents an object expression that evaluates to an object in the Applies To list.
Remarks
When an object is loaded, it is placed in memory, but isn't visible. Use the Show method to make the object
visible. Until an object is visible, a user can't interact with it. The object can be manipulated programmatically
in its Initialize event procedure.

Example:
Private Sub Command1_Click ()
 Load Form2
 Form2.Show
End Sub

Aaron Wirth

55

UnLoad
Removes an object from memory.
Syntax
Unload object

The required object placeholder represents an object expression that evaluates to an object in the Applies To
list.
Remarks
When an object is unloaded, it's removed from memory and all memory associated with the object is reclaimed.
Until it is placed in memory again using the Load statement, a user can't interact with an object, and the object
can't be manipulated programmatically.

Example:
Private Sub Command2_Click()
 Form2.Hide
 Unload Form2
End Sub

SendKeys
Sends one or more keystrokes to the active window as if typed at the keyboard.
Syntax
SendKeys string[, wait]

The SendKeys statement syntax has these named arguments:

Part Description

string Required. String expression specifying the keystrokes to send.

Wait Optional. Boolean value specifying the wait mode. If False (default), control is returned to the
procedure immediately after the keys are sent. If True, keystrokes must be processed before
control is returned to the procedure.

Remarks
Each key is represented by one or more characters. To specify a single keyboard character, use the character
itself. For example, to represent the letter A, use "A" for string. To represent more than one character, append
each additional character to the one preceding it. To represent the letters A, B, and C, use "ABC" for string.
The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses () have special meanings to SendKeys.
To specify one of these characters, enclose it within braces ({}). For example, to specify the plus sign, use {+}.
Brackets ([]) have no special meaning to SendKeys, but you must enclose them in braces. In other applications,
brackets do have a special meaning that may be significant when dynamic data exchange (DDE) occurs. To
specify brace characters, use {{} and {}}.
To specify characters that aren't displayed when you press a key, such as ENTER or TAB, and keys that
represent actions rather than characters, use the codes shown below:

Aaron Wirth

56

KeyCodes

Key Code

BACKSPACE {BACKSPACE},
{BS}, or {BKSP}

BREAK {BREAK}

CAPS LOCK {CAPSLOCK}

DEL or
DELETE

{DELETE} or
{DEL}

DOWN
ARROW

{DOWN}

END {END}

ENTER {ENTER}or ~

ESC {ESC}

HELP {HELP}

HOME {HOME}

INS or
INSERT

{INSERT} or
{INS}

LEFT
ARROW

{LEFT}

NUM LOCK {NUMLOCK}

PAGE
DOWN

{PGDN}

PAGE UP {PGUP}

PRINT
SCREEN

{PRTSC}

RIGHT
ARROW

{RIGHT}

Key Code

SCROLL
LOCK

{SCROLLLOCK}

TAB {TAB}

UP ARROW {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

F14 {F14}

F15 {F15}

F16 {F16}

To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede the key
code with one or more of the following codes:

Key Code

SHIFT +

CTRL ^

ALT %

To specify that any combination of SHIFT, CTRL, and ALT should be held down while several other
keys are pressed, enclose the code for those keys in parentheses. For example, to specify to hold down
SHIFT while E and C are pressed, use "+(EC)". To specify to hold down SHIFT while E is pressed,
followed by C without SHIFT, use "+EC".
To specify repeating keys, use the form {key number}. You must put a space between key and number.
For example, {LEFT 42} means press the LEFT ARROW key 42 times; {h 10} means press H 10
times.

Aaron Wirth

57

Example:
Command1_Click ()

Text1.SetFocus
SendKeys “{Backspace}”
End Sub
‘Deletes last character in Text1

Command1_Click ()
SendKeys "%{F4}"

End Sub
‘Closes current window/program

LoadPicture
Specifies the bitmap to display on an object.
Syntax
object.Picture = LoadPicture(pathname)

The Picture property syntax has these parts:

Part Description

object Required. A valid object.

pathname Required. The full path to a picture file.

Example:
Command1_Click ()

Image1.Picture = LoadPicture(C:\Blah.jpg)
End Sub
‘Loads the Picture Blah.jpg in Image1

AppActivate
Activates an application window.
Syntax
AppActivate title[, wait]
The AppActivate statement syntax has these named arguments:

Part Description

title Required. String expression specifying the title in the title bar of the application window you
want to activate. The task ID returned by the Shell function can be used in place of title to
activate an application.

wait Optional. Boolean value specifying whether the calling application has the focus before
activating another. If False (default), the specified application is immediately activated, even
if the calling application does not have the focus. If True, the calling application waits until
it has the focus, then activates the specified application.

Remarks
The AppActivate statement changes the focus to the named application or window but does not affect
whether it is maximized or minimized. Focus moves from the activated application window when the
user takes some action to change the focus or close the window. Use the Shell function to start an
application and set the window style.

Example:
Command1_Click ()

AppActivate "Microsoft Word" ' Activates Microsoft Word.
End Sub

Aaron Wirth

58

Values
IsNull
Returns a Boolean value that indicates whether an expression contains no valid data (Null).
Syntax
IsNull(expression)

The required expression argument is a Variant containing a numeric expression or string expression.
Remarks
IsNull returns True if expression is Null; otherwise, IsNull returns False. If expression consists of
more than one variable, Null in any constituent variable causes True to be returned for the entire
expression

Example:
MyVar = ""
MyCheck = IsNull(MyVar) ' Returns False.

MyVar = Null
MyCheck = IsNull(MyVar) ' Returns True.

IsEmpty
Returns a Boolean value indicating whether a variable has been initialized.
Syntax
IsEmpty(expression)

The required expression argument is a Variant containing a numeric or string expression. However,
because IsEmpty is used to determine if individual variables are initialized, the expression argument is
most often a single variable name.
Remarks
IsEmpty returns True if the variable is uninitialized, or is explicitly set to Empty; otherwise, it returns
False. False is always returned if expression contains more than one variable. IsEmpty only returns
meaningful information for variants.

Example:
MyVar = Null ' Assign Null.
MyCheck = IsEmpty(MyVar) ' Returns False.

MyVar = Empty ' Assign Empty.
MyCheck = IsEmpty(MyVar) ' Returns True.

IsNumeric
Returns a Boolean value indicating whether an expression can be evaluated as a number.
Syntax
IsNumeric(expression)

The required expression argument is a Variant containing a numeric expression or string expression.
Remarks
IsNumeric returns True if the entire expression is recognized as a number; otherwise, it returns False.
IsNumeric returns False if expression is a date expression.

Example:
MyVar = "459.95" ' Assign value.
MyCheck = IsNumeric(MyVar) ' Returns True.

MyVar = "45 Help" ' Assign value.
MyCheck = IsNumeric(MyVar) ' Returns False.

Aaron Wirth

59

Loops and Conditional
If...Then...Else Statement
Conditionally executes a group of statements, depending on the value of an expression.
Syntax
If condition Then [statements] [Else elsestatements]
Or, you can use the block form syntax:
If condition Then
[statements]
[ElseIf condition-n Then
[elseifstatements] ...
[Else
[elsestatements]]
End If

The If...Then...Else statement syntax has these parts:

Part Description

condition Required. One or more of the following two types of expressions:

A numeric expression or string expression that evaluates to True or False.
If condition is Null, condition is treated as False.

An expression of the form TypeOf objectname Is objecttype. The
objectname is any object reference and objecttype is any valid object type.
The expression is True if objectname is of the object type specified by
objecttype; otherwise it is False.

statements Optional in block form; required in single-line form that has no Else clause.
One or more statements separated by colons; executed if condition is True.

condition-n Optional. Same as condition.

elseifstatements Optional. One or more statements executed if associated condition-n is
True.

elsestatements Optional. One or more statements executed if no previous condition or
condition-n expression is True.

Example:
Dim Number, Digits, MyString
Number = 53 ' Initialize variable.
If Number < 10 Then
 Digits = 1
ElseIf Number < 100 Then
' Condition evaluates to True so the next statement is executed.
 Digits = 2
Else
 Digits = 3
End If

End Statements
Ends a procedure or block.
Syntax
End
End Function
End If
End Property
End Select
End Sub

Aaron Wirth

60

End Type
End With

The End statement syntax has these forms:

Statement Description

End Terminates execution immediately. Never required by itself but may be
placed anywhere in a procedure to end code execution, close files opened
with the Open statement and to clear variables.

End Function Required to end a Function statement.

End If Required to end a block If…Then…Else statement.

End Property Required to end a Property Let, Property Get, or Property Set procedure.

End Select Required to end a Select Case statement.

End Sub Required to end a Sub statement.

End Type Required to end a user-defined type definition (Type statement).

End With Required to end a With statement.

Remarks
When executed, the End statement resets all module-level variables and all static local variables in all
modules. To preserve the value of these variables, use the Stop statement instead. You can then resume
execution while preserving the value of those variables.

Example:
Sub Form_Load
 Dim Password, Pword
 PassWord = "Swordfish"
 Pword = InputBox("Type in your password")
 If Pword <> PassWord Then
 MsgBox "Sorry, incorrect password"
 End
 End If
End Sub

Stop
Suspends execution.
Syntax
Stop

Remarks
You can place Stop statements anywhere in procedures to suspend execution. Using the Stop statement
is similar to setting a breahkpoint in the code.
The Stop statement suspends execution, but unlike End, it doesn't close any files or clear variables,
unless it is in a compiled executable (.exe) file.

Example:
If Label1 = “Blah” then
 Stop
End if

Aaron Wirth

61

Switch
Evaluates a list of expressions and returns a Variant value or an expression associated with the first
expression in the list that is True.
Syntax
Switch(expr-1, value-1[, expr-2, value-2 … [, expr-n,value-n]])

The Switch function syntax has these parts:

Part Description

expr Required. Variant expression you want to evaluate.

value Required. Value or expression to be returned if the corresponding
expression is True.

Remarks
The Switch function argument list consists of pairs of expressions and values. The expressions are
evaluated from left to right, and the value associated with the first expression to evaluate to True is
returned. If the parts aren't properly paired, a run-time error occurs. For example, if expr-1 is True,
Switch returns value-1. If expr-1 is False, but expr-2 is True, Switch returns value-2, and so on.
Switch returns a Null value if:
None of the expressions is True.
The first True expression has a corresponding value that is Null.

Example:
Function MatchUp (CityName As String)
 Matchup = Switch(CityName = "London", "English", CityName _
 = "Rome", "Italian", CityName = "Paris", "French")
End Function
‘This example uses the Switch function to return the name of a language that matches the name of a
city.

Goto
Branches unconditionally to a specified line within a procedure.
Syntax
GoTo line

The required line argument can be any line label or line number.
Remarks
GoTo can branch only to lines within the procedure where it appears.
Note Too many GoTo statements can make code difficult to read and debug. Use structured control
statements (Do...Loop, For...Next, If...Then...Else, Select Case) whenever possible.

Example:
If Label1 = “Blah” then

Goto Something
Else

End
Something:
End if

Aaron Wirth

62

On...GoSub, On...GoTo Statements
Branch to one of several specified lines, depending on the value of an expression.
Syntax
On expression GoSub destinationlist
On expression GoTo destinationlist

The On...GoSub and On...GoTo statement syntax has these parts:

Part Description

expression Required. Any numeric expression that evaluates to a whole number
between 0 and 255, inclusive. If expression is any number other than a
whole number, it is rounded before it is evaluated.

destinationlist Required. List of line numbers or line labels separated by commas.

Remarks
The value of expression determines which line is branched to in destinationlist. If the value of
expression is less than 1 or greater than the number of items in the list, one of the following results
occurs:

If expression is Then

Equal to 0 Control drops to the statement following
On...GoSub or On...GoTo.

Greater than number of items in list Control drops to the statement following
On...GoSub or On...GoTo.

Negative An error occurs.

Greater than 255 An error occurs.

You can mix line numbers and line labels in the same list. You can use as many line labels and line
numbers as you like with On...GoSub and On...GoTo. However, if you use more labels or numbers
than fit on a single line, you must use the line-continuation character to continue the logical line onto
the next physical line.

GoSub...Return Statement
Branches to and returns from a subroutine within a procedure.
Syntax
GoSub line
...
line
...
Return

The line argument can be any line label or line number.
Remarks
You can use GoSub and Return anywhere in a procedure, but GoSub and the corresponding Return
statement must be in the same procedure. A subroutine can contain more than one Return statement,
but the first Return statement encountered causes the flow of execution to branch back to the statement
immediately following the most recently executed GoSub statement.
Note You can't enter or exit Sub procedures with GoSub...Return.

Aaron Wirth

63

Example:
Sub GosubDemo()
Dim Num
' Solicit a number from the user.
 Num = InputBox("Enter a positive number to be divided by 2.")
' Only use routine if user enters a positive number.
 If Num > 0 Then GoSub MyRoutine
 Debug.Print Num
 Exit Sub ' Use Exit to prevent an error.
MyRoutine:
 Num = Num/2 ' Perform the division.
 Return ' Return control to statement.
End Sub ' following the GoSub statement.

With Statement
Executes a series of statements on a single object or a user-defined type.
Syntax
With object
[statements]
End With

The With statement syntax has these parts:

Part Description

object Required. Name of an object or a user-defined type.

statements Optional. One or more statements to be executed on object.

Remarks
The With statement allows you to perform a series of statements on a specified object without
requalifying the name of the object. For example, to change a number of different properties on a single
object, place the property assignment statements within the With control structure, referring to the
object once instead of referring to it with each property assignment. The following example illustrates
use of the With statement to assign values to several properties of the same object.

Example:
With MyLabel
 .Height = 2000
 .Width = 2000
 .Caption = "This is MyLabel"
End With

For...Next Statement
Repeats a group of statements a specified number of times.
Syntax
For counter = start To end [Step step]
[statements]
[Exit For]
[statements]
Next [counter]

The For…Next statement syntax has these parts:

Part Description

counter Required. Numeric variable used as a loop counter. The variable can't be a
Boolean or an array element.

start Required. Initial value of counter.

Aaron Wirth

64

end Required. Final value of counter.

step Optional. Amount counter is changed each time through the loop. If not
specified, step defaults to one.

statements Optional. One or more statements between For and Next that are executed
the specified number of times.

Remarks
The step argument can be either positive or negative. The value of the step argument determines loop
processing as follows:

Value Loop executes if

Positive or 0 counter <= end

Negative counter >= end

After all statements in the loop have executed, step is added to counter. At this point, either the
statements in the loop execute again (based on the same test that caused the loop to execute initially),
or the loop is exited and execution continues with the statement following the Next statement.

Example:
Dim Words, Chars, MyString
For Words = 10 To 1 Step -1 ' Set up 10 repetitions.
 For Chars = 0 To 9 ' Set up 10 repetitions.
 MyString = MyString & Chars ' Append number to string.
 Next Chars ' Increment counter
 MyString = MyString & " " ' Append a space.
Next Words

While...Wend Statement
Executes a series of statements as long as a given condition is True.
Syntax
While condition
[statements]
Wend

The While...Wend statement syntax has these parts:

Part Description

condition Required. Numeric expression or string expression that evaluates to True or
False. If condition is Null, condition is treated as False.

statements Optional. One or more statements executed while condition is True.

Remarks
If condition is True, all statements are executed until the Wend statement is encountered. Control then
returns to the While statement and condition is again checked. If condition is still True, the process is
repeated. If it is not True, execution resumes with the statement following the Wend statement.
While...Wend loops can be nested to any level. Each Wend matches the most recent While.
Tip The Do...Loop statement provides a more structured and flexible way to perform looping.

Example:
Dim Counter
Counter = 0 ' Initialize variable.
While Counter < 20 ' Test value of Counter.
 Counter = Counter + 1 ' Increment Counter.
Wend ' End While loop when Counter > 19.
Debug.Print Counter ' Prints 20 in the Immediate window.

Aaron Wirth

65

Do...Loop Statement
Repeats a block of statements while a condition is True or until a condition becomes True.
Syntax
Do [{While | Until} condition]
[statements]
[Exit Do]
[statements]
Loop
Or, you can use this syntax:
Do
[statements]
[Exit Do]
[statements]
Loop [{While | Until} condition]

The Do Loop statement syntax has these parts:

Part Description

condition Optional. Numeric expression or string expression that is True or False. If
condition is Null, condition is treated as False.

statements One or more statements that are repeated while, or until, condition is True.

Remarks
Any number of Exit Do statements may be placed anywhere in the Do…Loop as an alternate way to
exit a Do…Loop. Exit Do is often used after evaluating some condition, for example, If…Then, in
which case the Exit Do statement transfers control to the statement immediately following the Loop.
When used within nested Do…Loop statements, Exit Do transfers control to the loop that is one nested
level above the loop where Exit Do occurs.

Example:
Dim Check, Counter
Check = True: Counter = 0 ' Initialize variables.
Do ' Outer loop.
 Do While Counter < 20 ' Inner loop.
 Counter = Counter + 1 ' Increment Counter.
 If Counter = 10 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 Exit Do ' Exit inner loop.
 End If
 Loop
Loop Until Check = False ' Exit outer loop immediately.

IIF
Returns one of two parts, depending on the evaluation of an expression.
Syntax
IIf(expr, truepart, falsepart)

The IIf function syntax has these named arguments:

Part Description

expr Required. Expression you want to evaluate.

truepart Required. Value or expression returned if expr is True.

falsepart Required. Value or expression returned if expr is False.

Aaron Wirth

66

Remarks
IIf always evaluates both truepart and falsepart, even though it returns only one of them. Because of
this, you should watch for undesirable side effects. For example, if evaluating falsepart results in a
division by zero error, an error occurs even if expr is True.

Example:
Function CheckIt (TestMe As Integer)
 CheckIt = IIf(TestMe > 1000, "Large", "Small")
End Function

For Each...Next Statement
Repeats a group of statements for each element in an array or collection.
Syntax
For Each element In group
[statements]
[Exit For]
[statements]
Next [element]

The For...Each...Next statement syntax has these parts:

Part Description

element Required. Variable used to iterate through the elements of the collection or
array. For collections, element can only be a Variant variable, a generic
object variable, or any specific object variable. For arrays, element can only
be a Variant variable.

group Required. Name of an object collection or array (except an array of user-
defined types).

statements Optional. One or more statements that are executed on each item in group.

Remarks
The For...Each block is entered if there is at least one element in group. Once the loop has been
entered, all the statements in the loop are executed for the first element in group. If there are more
elements in group, the statements in the loop continue to execute for each element. When there are no
more elements in group, the loop is exited and execution continues with the statement following the
Next statement.
Any number of Exit For statements may be placed anywhere in the loop as an alternative way to exit.
Exit For is often used after evaluating some condition, for example If…Then, and transfers control to
the statement immediately following Next.

Example:
Dim Found, MyObject, MyCollection
Found = False ' Initialize variable.
For Each MyObject In MyCollection ' Iterate through each element.
 If MyObject.Text = "Hello" Then ' If Text equals "Hello".
 Found = True ' Set Found to True.
 Exit For ' Exit loop.
 End If
Next

Aaron Wirth

67

Select Case Statement
Executes one of several groups of statements, depending on the value of an expression.
Syntax
Select Case testexpression
[Case expressionlist-n
[statements-n]] ...
[Case Else
[elsestatements]]
End Select

The Select Case statement syntax has these parts:

Part Description

testexpression Required. Any numeric expression or string expression.

expressionlist-n Required if a Case appears. Delimited list of one or more of the following
forms: expression, expression To expression, Is comparisonoperator
expression. The To keyword specifies a range of values. If you use the To
keyword, the smaller value must appear before To. Use the Is keyword with
comparison operators (except Is and Like) to specify a range of values. If
not supplied, the Is keyword is automatically inserted.

statements-n Optional. One or more statements executed if testexpression matches any
part of expressionlist-n.

elsestatements Optional. One or more statements executed if testexpression doesn't match
any of the Case clause.

Remarks
If testexpression matches any Case expressionlist expression, the statements following that Case clause
are executed up to the next Case clause, or, for the last clause, up to End Select. Control then passes to
the statement following End Select. If testexpression matches an expressionlist expression in more
than one Case clause, only the statements following the first match are executed.
The Case Else clause is used to indicate the elsestatements to be executed if no match is found between
the testexpression and an expressionlist in any of the other Case selections. Although not required, it is
a good idea to have a Case Else statement in your Select Case block to handle unforeseen
testexpression values. If no Case expressionlist matches testexpression and there is no Case Else
statement, execution continues at the statement following End Select.

Example:
Dim Number
Number = 8 ' Initialize variable.
Select Case Number ' Evaluate Number.
Case 1 To 5 ' Number between 1 and 5, inclusive.
 Debug.Print "Between 1 and 5"
' The following is the only Case clause that evaluates to True.
Case 6, 7, 8 ' Number between 6 and 8.
 Debug.Print "Between 6 and 8"
Case 9 To 10 ' Number is 9 or 10.
Debug.Print "Greater than 8"
Case Else ' Other values.
 Debug.Print "Not between 1 and 10"
End Select

